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The product 1imit estimator of the cumulative distribution function

and failure rates is calculated from the data in Table 1 as follows:
Columns 1 and 3 are the same as columns 1 and 8 in Table 1 except that the
removal times are reordered along with their indexes. Column 2 is the re-
moval code useful here and in calculation of the maximum 1ikelihood
estimator. Column 4 is the product limit estimate of the percent surviving
or tail cumulative distribution function at the time or age values in
column 3. The formula as given in Kaplan and Meier [ 4 ] is

m (N-r)/(N-r+1)

r
where N is the sample size 20 and the index r ranges from 1 to 20 taking

on only the values for inspection and usage removals in column 3. Column 5

is the complement of column 4, the product 1imit estimator of the cumulative
distribution function (5.2). Column 6 is the value of the failure rate
function assuming that it is constant during the interval. It is the log

of (N-r)/(N-r+1) for intervals between engine removal age r and the next
subsequent engine removal. Column 7 is the cumulative failure rate function
at the age in column 3, which is also the natural logarithm of Column 4.

The product limit estimator and the theoretical cumulative distribu-
tion functions are plotted in figure 4 and their corresponding cumulative
failure rates are in figure 5. For comparison of the product Timit estimator
with the actuarial estimator of failure rates, the product limit estimator
of failure rates during each 40 hour age interval must be calculated from
the cumulative failure rate estimator. The comparison of product 1imit

estimator with the theoretical interval failure rates is shown in fiqure 6.
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TABLE 4

PROJUCT LIMIT CUMULATIVE FAILURE RATE FUNCTION

4 (otwe 2 3 4 5 6 7
umber
nggzn Index Code Age g(N-r)/(N-r+1) FPL(t) r* R(t)
1 Survivor (:) - .0
2 Usage 7 .947 .053 .054 .054
3 Usage 10 .895 .105 . 057 1
4 Usage 10 .842 .158 .061 72
5 Survivor - .061 = 2
6 Usage 32 .786 .214 . 069 .24
7 Survivor - .064 -
8 Usage 68 .726 .274 .080 . 321
9 Usage 82 .665 -335 .087 .408
10 Usage 92 .605 +395 .095 <503
11 Survivor - .095 -
12 Inspection 100 .537 .453 .118 .621
13 Inspection 100 .470 .530 .134 155 .82
14 Survivor = .134 =
15 Usage 164 +392 .608 .182 927 .93
16 Survivor = .182 =
17 Max time 200 .294 .706 .288 le225 173
18 Max time 200 .405 1.630
19 Max time 200 .693 Zv3e
20 Max time 200 0 1.0 ® ®

*Failure rate function is assumed constant between observations of actual
removals.
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In comparison with actuarial failure rates in Figure 2,
the product limit estimator is closer than the actuarial estimator to the
theoretical interval failure rate except in intervals 1 and 5.
expected that this superiority will increase as sample size grows
because the product limit estimator uses the actual values of removal times
and survivors' ages instead of lumping the time values into interval counts
exposures and removals.

It is very easy to calculate interval failure rates for any width
of age intervals from the cumulative failure rate function in column 8
or any cumulative failure rate function R(t), t > 0. If at is the desired
width of age intervai, then the interval failure rate here denoted as
is

RoLi

Ry i = R(iat) - R((i-i)at).

pL
For exampie, in order to obtain the product Timit estimator of the failure
rate in interval 2, 40 to 80 hours, use linear interpolation between
usage removals at 33 and 68 hours to obtain R(40) = .25 and between usage
removals at 68 and 82 hours to obtain R(80) = .38. (These values were read
from figure 5). The interval failure rate RPL2 is the difference, .13.

The maximum Tikelihood estimators for the usage removal time cumulative
distribution function and the probability of removal at inspection have
also been computed according to formulas in Appendix A. (The maximum
likelihood estimator of the removal time cumulative distribution function
regardless of whether it is an inspection or usage removal is the product

limit estimator.) The estimate of the probability of removal at the first

inspection is

°  _ number removed at inspection 2 . 599
Pi number surviving to inspection 9 -
29
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(the theoretical value was 0.2) and the estimate of the usage removal time
cumulative distribution function is equivalent to Figure 4 without the
jump at 100 hours. This is plotted against the theoretical formula used
to generate usage removal times in Figure 7. The jump at 200 hours :
represents the probability of surviving usage removal to max time.

A computer program for comparison of estimators on several bases has
been written. In the remainder of this section, estimators are compared on
the basis of their cumulative distribution function. In Part II, Section 8,
estimators are compared on the basis of how well they predict replacement
requirements. The flow chart for computation of the maximum likelihood
estimators is shown in Figure 8. In Figure 9 the actuarial and product
limit estimators are compared with the theoretical distribution with three
inspections at 50, 100 and 150 hours. No survivors' ages were generated
(no censoring), but the rest of the program generated data and computed
estimators as was done earlier in this section. Figures10 and 1] are the
maximum likelihood estimators of the usage removal time cumulative dis-

tribution function which was calculated from data generated from an

exponential usage removal time with mean 133.5 and inspection at 100 hours.

Figure 11 shows the estimator in the presence of some survivors' ages.
Figure 12 shows the cumulative failure rate function from figure 10
plotted along with the theoretical failure rate function. The slight Tow
side bias in all three figures is due to the fact that the simulated data
contained fewer usage removals than expected, not because of systematic
bias in the estimators. A best fit linear regression to the cumulative
failure rate estimator plotted in Figure 12 gave a slope of .0070 and an

intercept of -.0064 with an R® value of .9966 indicating the data almost
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certainly come from a linear model for a cumulative failure rate function £
which it did since the cumulative failure rate function for exponential

usage removal ages is linear.
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9. The Actuarial Poisson Approximation to Spare Engine

Requirements and Other Analytical Approximations

It is not sufficient for engine management to predict only the expected

h

number of engine replacements that require repair or rebuilding. The Air
Force must plan spares requirements to give a comfortably high probability
of meeting mission requirements, usually 80% or 907, i.e., the number of
spares must be sufficient to meet replacement requirements for the flying
hour program with probability .8 or .9. In order to determine these
numbers, the 80th and 90th precentiles of the replacement requirercnts’
distribution must be estimated. The actuarial method contains a procedure
to do this. The simulation program can be easily revised to produce these
estimates. Other analytical approximations may be possible, perhaps com-
bined with simulation. Each of these approaches will be described in this
section and the foundations for the Poisson approximation will be reviewed
to show a potential improvement in its accuracy.

The actuarial method for estimating safety stock levels in AFM 400-1
Chapter 8 [ 13 ] is based on the assumption that demand for spare engines
has a Poisson distribution with rate parameter or expected demand per unit
calendar time equal to the rate that engines require repair or rebuilding.
(If there are fewer spares than will eventually be in repair or are being
rebuilt, then some aircraft will not have engines.) The Safety Level Table
Figure 8-1 of AFM 400-1 is a table of the 90th percentile of a Poisson dis-
tribution for different values of its parameter. The Poisson assumption is
unlikely to be true exactly, but the conditions for use of a Poisson approxi-

mation may be near realization. Those conditions are (Cox [ 12 ] Chapter 6):
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account the initial failure rate after installation. Unless the calendar

exceeded in 907 of the simulation runs. The accuracy of this estimate could

1. There are many simultaneously operating or installed engines, and
2. The distribution of the residual calendar times from engine
installation to removal is the same for all engines and those times

are independent.

Condition 2 may be violated for multiple engine planes and it may also be
violated because some engines are not new at installation.

The conditions above should be tested if the Poisson approximation
for spare engine requirements is to be used. If the conditions are
realized, then the Po mn approximation should be modified to take into
time between engine installation and removal is exponentially distributed,
the initial failure rate can be used to improve the Poisson approximation.
(If the initial failure rate is higher than average, more spares are
required. )

Meanwhile, the next event simulation of replacement requirements can
give all information about the distribution of replacements including
percentiles. For instance the 90th percentile of simulated replacement
requirements are obtainable from Figures 16 , 17, and 18 , and they are
shown in Table 7. They are obtained by reading the figures across from
the vertical axis at probability value 0.90 and reading down to the

horizontal axis to obtain the value of engine requirements that was not

be estimated from many repeated simulation runs.
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Another approximation to the number of replacement requirements is

possible by an adaptation of the central limit theorem. It is known tnat

the number of replacements with new, independent, identical components has

o

approximately a normal distribution after a long time, regardiess of the

1ife distribution of the components (Cox Chapter 3 {12 1). The central

1imit theorem is remarkably robust and will tolerate some variation in the
residual operating time distribution of the components, (Lindberg Conditions,
Gnedenko, Chapter 8 [ 23 ]). This tolerance is probably sufficient so

that the normal approximation to replacement requirements is still ade-
quate for engines even though some engines are not new at installation.

This long time approximation could be combined with a simulation to

determine replacement requirements for the near future. Some additional

research is required here to develop the normal approximation.

The temptation is always present to assume a simple

operation for convenience in predicting replacement requirements. It
would also be desirable to incorporate additional information about an
engine's history into a model of engine operation to obtain more accurate

prediction of removal times and replacement requirements. Seve
approaches are possible that should be explored.
1) Postulate that the failure rate function of the remo
times (regardless of whether the removal is for repai
or rebuild) is of the form (Cox [ 14 1)

r(t) = ro(t)e'Z :

where 7 is a row vector of concomittant variabies wi
relation to engine age at removal and @ is a column vector

of constants. Likely concomittant variables are the number

.

R

of prior repairs and the age at last installation.
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2) Postulate that the process causing combined removals interacts

with an age dependent probability that determines whether
the engine is repaired or rebuilt. (0Older engines are more
likely to be rebuilt than nearly new engines when removed.)
3) Postulate that the replacement requirements process is a

Markov process in operating time and that there is a known
random transformation from operating time to calendar time
which may depend on the Markov process. The number of re-
placements required is also a Markov renewal process under
rather general conditions.

Each of these three postulated models has properties that make them
useful for different aspects of engine management. The first model is con-
venient to estimate and can be used to determine trends in the performance
of engines (Tarone [ 18 J). The second model is convenient for determining
operating time between engine overhauls. The third model converts replace-
ments occurring in operating time to replacements in calendar time as a
function of the flying hour program and the rate at which each aircraft

contributes to the program.
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SECTION 3

RECOMMENDATIONS

Recommendation 1: Do not smooth the “crude" actuarial failure rates.

The smoothing procedure is a vestige of the life insurance industry

where there was no reason to assume human failure rates were not smooth.

The converse is true for engine failure rates due to component failure and
the high probability of removal at inspection. To smooth the failure

rates is to suppress the information most useful for engine diagnosis and
for prediction of replacement requirements. Recommendation 1 can be adopted
immediately and will only reduce computation.

The actuarial method employs a linear extrapolation of earlier failure
rates where data grows sparse and the actual data is not used. This data can
and should be used in calculation of the engine removal time distribution
and failure rates. Several recommendations to follow will use all data.

Even if none of them is adopted, it is still possible to get enough observa-
tions in each actuarial age interval to estimate meaningful failure rates by
making some of the intervals larger. The ultimate extension of variable
actuarial age interval estimators is the estimator with exactly one removal
per interval. Because this estimator,called the "product 1limit" estimator,
was already available, no further study of actuarial type estimators

was done. Unfortunately this estimator does not take into account the age of
engines at the beginning of some calendar period of operation, information
which now may be useful for some purposes. This leads to two recommendations
for further development.

Recommendation 2: Develop actuarial estimators with flexible age

intervals and modify the product 1imit estimator to take into account
engine ages at the beginning of some period or their ages at the latest

installation if they were installed after the beginning of the period.
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Recommendation 3: Determine whether it is worthwhile to use the

additional information on ages for all actuarial purposes.

The estimator with one removal per age interval uses all engine operating
time information, whether a removal time or the age of a still operating
engine, to obtain the cumulative failure rates or the cumulative distribution
function of engine removal times. This type of estimator also can provide
every information product now computed from the actuarial failure rates,
and the resulting products will usually be more accurate because the actual
removal time information is fully used. The product limit estimator requires
more computation than the actuarial estimator, but the required computation
is well within the capability of current computers.

The second recommendation requires applied statistical research and the
third requires some testing. If the second recommendation is successful,
there is no reason to pursue the third. There is every reason to expect
success on the second recommendation because there are possible estimators

that exist or could easily be developed to use all the information now

available on engine ages and removal times. As part of this research contract,
the maximum Tikelihood estimator for an engine removal time model that
distinguishes usage, inspection and max time removals was derived for a

sample of removal times and survivors ages. The derivation can be modified

to incorporate engine ages at the beginning of some calendar period or at
last installation. That is recommendation 4.

Recommendation 4: Derive the maximum likelihood estimator for the

removal time model with statistically independent usage and inspection
removal times. Test whether this model is appropriate for engine

removals.

oA
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If the model is appropriate, an estimator will be available that is
expected to be simpler to use than the product limit estimator, and it also

gives an estimate of usage removal times, useful for engine diagnostics

ot

and for curve fitting attempts to identify a parametric model of engine usage
removal times.

One question that should be addressed by the actuarial statistical test
is - does the official failure rate reflect the performance of the current
population of engines? The answer is provided by comparing the data set
from which the official failure rates were computed with the data set con-
taining current engine removal data. The updating program submitted with
this report provides a statistically valid measure that the two data sets
really came from the same population. It is designed to compare all past
data sets with current data on removal times and survivors' ages.

Recommernu :“ion 5: Adopt the engine removal data updating program

submitted with this report to replace the current statistical test for

|
?
:

changing the official failure rates age interval by age interval.
This updating program does not use ages of engines at the beginning of
any period or at installation. A modification has been proposed that will
do this but it requires further development.

Recommendation 6: Develop the modified statistical two sample Wilcoxon

rank test to incorporate engine removal times, survivors' ages at the

end of the operating periods, and ages at the beginning of the period or

at installation whichever is later.

The actuarial procedure for computing confidence limits for spare engine
requirements recognizes that demands do not always equal expected demand, so

additional spares are required to keep the probability of running out to an
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acceptable level. However the procedure is based on the assumption that

demands have a Poisson distribution. This is true only under very special
conditions or when the number of operating engines is very large and all
replacements are new. The Poisson assumption should be revaluated with

two possibilities in mind. First, the Poisson approximation may be strengthened
by a second order term involving the initial failure rate. Second, the

normal approximation may be adapted to provide a better estimate of engine
requirements after the engines have been in use for some time. These
observations leac to recommendation 7.

Recommendation 7: Revaluate the spare engine requirements computation

now based on the assumption of a Poisson demand distribution.

Other data related to engine removal times is available and should be
used to obtain more accurate estimates of engine removal times and
consequently of replacement requirements; data such as sorties, engine cycles,
prior repairs, X-ray and chemical analyses. Development and testing of more
comprenensive statistical estimators is necessary for significant improvement
beyond the expected improvement from recommendations 1-6.

Recommendation 8: Support the research necessary to develop more

comprehensive estimators of engine removal times.

Presently, simulation is the only statistically valid way to estimate
engine requirements. The simulation program now used to predict engine
requirements simulates each engine through each actuarial age interval.

The result is a time consuming program which gives only an estimate of
expected replacement requirements but no confidence limits and no indication
of the accuracy of the requirements estimate. The next event method can
simulate fleet operation many times and obtain information on confidence

limits, accuracy of estimates, and even estimates of when engine removals
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will occur. The method can be used whether actuarial failure rates
used or the product limit estimator of recommendation Z is used.
Recommendation 9: Change the simulation program for replacement
requirements from an interval by interval simulation to a next event f
type simulation.
The program prepared for this report contains the ingredients fo
accurate simulation of engine removals but does not make any pretense of
accurately representing the repair and rebuilding of engines.
This has already been done in the JEMS program developed at AFLI
Recommendation 10: Combine the next event type simulation of the
engine removals and the JEMS program simulating repair and rebuilding.
This will have to be done in close cooperation with AFLC becauss of their
thorough knowledge of the repair process for engines.
The resulting program is likely to be the largest program that can be
handled in a reasonable amount of computer time. There is still a nced for
more accurate and more convenient methods to predict replacement requirements.
A normal approximation conditioned on tiie ages of the present stock of
engines should be developed for estimating engine requirements.
Recommendation 11: Support the research and development necessary
for a simulation of short term engine requirements combined with a

Tong term estimate based on a normal approximation.
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SECTION T

INTRODUCTION

The ultimate objective is to derive the maximum likelihood estimator
of the cumulative distribution function (c.d.f.) of engine removal times
from a progressively censored sample. The c.d.f. is assumed to be of

the form

o i(t)
F(e) = 1-Fy(e) I (1-p4) (1)
i=1
where ?l(t) is the tail c.d.f. of another non-singular c.d.f. possibly
truncated and representing usage removals, and the p; are the unconditional
probabilities of removal at the ith inspection time (fixed) where i(t) is
the index of last inspection prior to or at time t. Throughout this deriva-
tion time is measured in flying hours, not calendar time. Progressive
censoring occurs because estimation of the c.d.f. takes place at fixed
calendar times, and in addition to data on the flying hours at removal
of engines that have been replaced, the current accumulated flying hours
of installed engines that have not yet been removed is also known.
The plan of this derivation is in three stages. First, for the
sake of review, the empirical distribution function for an ordered random

sample of engine removal times T; < T < ... < Ty
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0 <T
£ N

F(t) ={i/N Ty <t < Ty (2)

1 t2Ty

will be derived by the method of maximum likelihood. Then the maximum
likelihood estimators of Fl(t) and the Pis j=1, 2,..., k, will be
derived for an uncensored sample of engine removal times. Substitution
of those estimators into the c.d.f. (1) yields the empirical distribution
function as an escimate of the model (1) but with additional information

about usage removals and inspection removals. Last, the maximum likelihood

estimatorsof Fy(t) and the p:are derived from a progressively censored
1 i

sample. Substitution into (1) yields the "product limit" estimator of

Kaplan and Meier [1].
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SECTION II
MAXIMUM LIKELIHOOD DERIVATION OF

THE EMPIRICAL DISTRIBUTION FUNCTION

Given an ordered random sample from an arbitrary c.d.f., it is
trequently assumed that the mass of the estimator will be placed only
at observed data in the sample. Then the likelihood function of the
sample is the product of masses fi’ i=1,2,...,N, at the data values
N S
N
L(tl,..-,tN; F(t)) =1

i=1

and the masses are subject to the constraints of non-negativity ana

W =2
h
]
=

i=1 1
so that the estimator of F(t) is a c.d.f. The values of fi that
maximize the likelihood function are all equal to 1/N. This can be

verified by the Lagrange multiplier method or by substitution of the

constraint

N-1
£ =1 =L e
N

i=1

into the likelihood function and setting derivatives of the log likelihood

function with respect to fi equal to zero,

N-1 : N-1
dFog b o S 4 = log fj + log (1- Z fj) }
Sfi Of j=1 j=1
i
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or

SlogL _ 1 _ 1 -
6fi fi N-1
1-2 £
=1

which gives

N-1

Ea=tlioand fj
J=il

for all i=1,2,...,N-1. Therefore, all such f., are equal to 1/N.

i
This gives the familiar step function that jumps only at observed engine
removal times.

For example, suppose there are five observations at times 10, 15,
25, 50 and 100. The empirical c.d.f. is shown in Figure 1.
Fo(0) A

B e e wn R i SRR e e o s

.8

0 . -+ + — b— 4

25 50 75 100 125 time

Figure 1. The Empirical c.d.f.

The properties of the empirical c.d.f. as an estimator are well known;

Gnedenko 2 shows the strong consistency of the estimator.
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SECTION IIT *
MAXIMUM LIKELTHOOD DERIVATION

OF THE FULL SAMPLE ESTIMATOR

The engine removal times Tl""’TN in the sample are assumed to
be independent and identically distributed according to F(t), (1). 1In
addition, the engine removal code specifies whether the removal was
during usage, at inspection, or at maximum time. Define the following

sequences:

{nj}, the number of removals at the jth inspection and
toaxs 3=Ls240 oo kEls (tmax - tk+1)
{mj}, the number of usage removals between the (j-1)st and the

jth inspection;

{M, !, the cumulative number of usage removals,

i
M. =2 m,, J=1 52, oy kELY
J q=1 A&

{t.}, the sequence of usage removal times, i=1,2,...,M 415 and

{t.}, inspection times and t :
max

These sequences turn out to be sufficient statistics. The sample
size N can be expressed in terms of usage removals, inspection

removals and maximum times removals as

N = Mk+1 + E n
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The likelihood function for the sample information is

Myt1 j(ti) k j-1 .
1l [fl(ci) I (1-p.) il [pj it (l—pi) (l-Fl(tf)) ]
j_:l j:]_ J j=]_ =7 4

o k
BI'Flﬁtmax ) ,H
j=1

Met+1
(l—pj)}] ¢
with fl(ti) denoting the density of Fl(t), discrete or continuous, at ty
b e tmax-e for small £>0, and the notation j(ti) is used to
indicate the index of the last inspection prior to the usage removal
at t;. The first term of the likelihood function is the probability
of the usage removals, the second term is the probability of inspection

removals, and the last is the probability of all the survivals to

t 2 C is a combinatorial constant.
max

In order to make the likelihood function positive, all of the
fl(ti) should be positive, and to maximize it, 1—Fl(t5) and
l—Fl(tmax) should be as large as possible consistent with the constraints
on the distribution function F(t); F(O—)=0, F(~)=1, and F(t) non-
decreasing in t. As in the maximum likelihood derivation of the
empirical distribution function, all the mass of Fl(‘) should be placed

at the observations {ti} and t

Then

“y = 3
1—Fl(t;) =1 2 ()
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and

= k+1
1-F1(tmax) = 1 - R fl(ti)

However, not all of the jumps in Fl(-) will be of the same size as in

the empirical distribution function. The derivative of the natural

logarithm of the likelihood function with respect to fl(ti) gives

I e <
.

§ low L/8Eft)) = 1/£;(e;) - £,(e5)/ L= £,(t5)

i=1

for all i=Mj_1 + l""Mj’ j=1,2,...;k+l. This indicates that the
maximum likelihood estimators of the jumps will be the same in
intervals before the first inspection, between inspections, and after

the last inspection. These jump sizes will be denoted by fl’fZ"“’fk+1'

The likelihood function now simplifies to

£, (M, -M; )‘] Fp
n By s

1

J=t

k+i i-1 M- M K+l §<i i
A AN e e

j=1 i i

where Pyl = 1. The log likelihood function is

k+1 i-1
LMy ) {In £5 + I In(l-p, )} +
i=1 j=1 4
k+1 j-1 j
+ z nj { 1n P - z ln(l—pi) + In(1- .E(Mi-Mi-l)fi) } +1a C
J=1 {=1 i=1

Take the derivative of the log likelihood function with respect

to pj and set it equal to zero, j=1,2,...,k,
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K+1 _] J k+1 1
(Slhmz I = '_}:‘ (Mi'Mi-l) (]_p,) * E_ - . Z =P
X J J Pryut: o

Remove the l-p. terms from the summations to obtain

=

L o e
P 1-pj 1=341 fes il i
or
k+1
B =, { M -M;+ L ny }
i=j

This gives the maximum likelihood estimator

A k+1

pj = nj/ {Mk+l - Mj + igj ni}

which may be rewritten as
j-1

Py = nj/ {N—Mj- 151 n;} o 3=1,2,....k

where the denominator is the number of survivors to the jth inspection.
Thus Pj is simply the proportion of survivors removed at the jth inspection.

Take the derivative of the log likelihood function with respect

to f; and set it equal to zero, T2l 325« ve glokls

§ In L 1 k+1 n, (M.-M. .)

T L I
it i ] L g (M.-M )£
fa +: AT A

Divide out (M;-Mj_j) to obtain the general relation for the maximum

likelihood estimators of fi




